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relation whose derivation is the subject of the next section, 
) 

d~ = f(v,T,a)dt. (3.22) 

Then substituting Eqs. (3.21) and (3.22) into (3.13) and (3.14) 

and solving for dp and dT, we get 

dp = FIG (3.23) 

dT = -MIG (3.24 ) 

where 

F = L m2 + ml (p-+q~dv + (ml n2-m2nl ) f(v,T,~)dt 

M = [.1.2 + .1.1 (p+q~dv + (.tln2-.l.2nl) f(v,T,~)dt 

G = .t l m2 - ml .l. 2 

In Eq. (3.8) it is assumed that ~ and E2 are known 

functions of p and T. These can be calculated by integrating Eq. 

(3.12) 

l. 

2. 

Then 

where 

along two paths, provided specific heats are known: 

Integrate over T at p = 0 

Integrate over p at constant temperature, T. 

Q = 

i = 

= 

iJ.0 + ST 0 - JP Qdp (3.25) E. = CpidT 1 0 0 

l, 2 

specific internal energy at absolute zero 
Kelvin and p = 0 (this is zero-point energy), 



50 

and 

= specific heat capacity at zero pressure. 

In summary, the generalized constitutive relations now 

consist of: 

1. Equations of state 

v. 
1 

= 

2. Specific heat capacities 

3. Zero-point energy difference 

Eoo EOO 
1 - 2 

4. Relaxation relation 

da/dt = f(v,T,a) 

5. Artificial viscosity, q. 

To complete the above description we must find a relaxation 

relation and an expression for q. 

3.3 Irreversible Thermodynamics and 
Phase Relaxation 

This section is concerned with the mechanism of phase 

transformations in the solid state. It should be possible to 

describe the mechanism of phase change in solids in terms of 

interatomic forces by use of kinetic theory. Actually, because 

of the problem's complexity, no such quantitative description 

has been achieved. However, very successful phenomenological 

theories for the kinetics of phase change have been devel-

oped (16,17,18,19). Such theories are of two kinds, known as 


